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Abstract—Eating well plays a key role in people’s overall
health and wellbeing. Studies have shown that many health-
related problems such as obesity, diabetes and anemia are closely
associated with people’s unhealthy eating habits (e.g., skipping
meals, eating irregularly and overeating). Thus, keeping track of
diet is becoming more important. Traditional eating monitoring
solutions relying on self-report remain an onerous task, while the
recent trends requiring users to wear dedicated yet expensive
hardware are cumbersome. To overcome these limitations, in
this paper, we develop a device-free eating monitoring system
using WiFi-enabled devices (e.g., smartphone or laptop). Our
system aims to automatically monitor users’ eating activities
by identifying the fine-grained eating motions and detecting the
minute movements during chewing and swallowing. In particular,
our system distinguishes eating from non-eating activities by
using K-means clustering with principal component analysis
on the extracted Channel State Information (CSI) from WiFi
signals. It further adopts a soft decision-based eating motion
classification through identifying the utensils (e.g., using a folk,
knife, spoon or bare hands) in use. Moreover, we propose
a minute motion reconstruction method to identify chewing
and swallowing through detecting users’ minute facial muscle
movements. The derived fine-grained eating monitoring results
are beneficial to the understanding of users’ eating behaviors
and estimation of food intake types and amounts. Extensive
experiments with 20 users over 1600-minute eating show that
the proposed system can recognize the user’s eating motions with
up to 95% accuracy and estimate the chewing and swallowing
amount within 10% percentage error.

Index Terms—WiFi sensing, CSI, Eating monitoring

I. INTRODUCTION

Eating, as an essential activity for energy intake and nutri-
tion supply, has been known to be closely related to people’s
health. A surfeit of food could lead to the excess of calorie in-
take, gaining body weight and various health-related problems
such as cardiovascular diseases, diabetes, stomach cancers [1].
Whereas the imbalanced or insufficient food intake could not
fulfill the daily body needs and further result in nutritional
deficiency problems such as anemia, osteoporosis and scurvy,
which impedes the cell recovery and growth, especially for
the patients, teenagers, and seniors. The recent U.S. reports
show that 70.2% of American people suffer from overweight
or obesity [2] and 90% of the U.S. population have a nutrient
deficiency [3]. It is thus important to keep tracking of diet and
maintain a good dietary habit.

∗Chen Wang’s contribution to this work was when he was a graduate student
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Figure 1. An illustration of the proposed eating monitoring system.

Traditional eating monitoring methods mainly rely on self-
reports (e.g., food logs [4] or food journals [5]). Smartphone
Apps such as YouEat [6] and Cara Care [7] allow users to
record the food diaries via text logs or pictures manually.
However, these self-report methods require user’s participation
to memorize or record the details in eating behaviors, and they
all suffer from the subjective biases and the memory recall
imprecision [8]. The food scanner or the calorie calculator
advances the self-monitoring methods by tracking the type of
food and calculating calorie consumption [9]. Nevertheless,
these methods usually require expensive dedicated hardware
and the users’ active participation is still inevitable.

In recent years, the emerging mobile sensing technologies
have enabled several automatic eating monitoring systems
such as smart utensil-based method [10] and wearable-based
methods [11], [12]. In particular, Smart-U, made of a special
spoon, can recognize the types of food by its reflected light
spectra [10]. Thomaz et al. [11] utilize the accelerometer in a
smartwatch to capture the eating moments by recognizing the
user’s hand motions during eating. Amft et al. [12] propose
to detect the air-conducted vibrations of food chewing by a
condenser microphone embedded in an ear pad to understand
the food textures. However, the smart utensil-based method
is limited to a single utensil, while the wearable-based ap-
proaches can only detect partial body motions where the de-
vices are worn (e.g., hand or jaw). They have limited capability
to provide comprehensive eating monitoring. Moreover, these
approaches all require additional dedicated devices.

Different from existing works, our goal is to develop a
device-free eating monitoring system leveraging WiFi signals
without the user’s active participation. In particular, we pro-
pose to recognize food intake types (e.g., plant-based food,
meat-based food, starch-based food and soup-based food)

978-1-7281-6607-0/20/$31.00 ©2020 IEEE
Authorized licensed use limited to: Rutgers University. Downloaded on June 10,2021 at 16:03:34 UTC from IEEE Xplore.  Restrictions apply. 



based on the combination of three-dimensional dietary infor-
mation: utensil usage, chewing time and swallow activity. The
key insight of this idea is that people would lean toward using
different utensils depending on food intake types. According
to a recent survey [13], fork and knife usage indicates veggie-
based and meat-based food, whereas hand usage indicates
starch-based food such as bread and pizza. Furthermore,
chewing times and swallow times could provide a more
comprehensive dietary information. The number of chews is
highly related to the food texture and density [14]. The high-
density food (e.g., steak and nuts) may require multiple chews,
whereas it takes fewer chews to break down soft and water-
filled food such as fruit and vegetables. Additionally, one-
time chewing and direct swallowing together might indicate
soup-based food, whereas chewing and swallowing for mul-
tiple times together indicates meat-based food. Based on the
combination of these three-dimensional dietary information,
our system takes one step further to provide an automatic
dietary monitoring that enables users to track their daily meal
composition and provides a potential solution to assist people
on their dietary. For example, dietary information could help
users to determine whether to reduce the food intake for
bodyweight management or to increase certain types of food
intake for obtaining sufficient minerals or vitamins.

Although using WiFi signal to recognize human activities
has previously shown its initial success, such as location-
oriented activity identification [15], fitness assistance [16] and
vital sign monitoring (e.g., breathing rate) [17], it cannot be
directly used for eating monitoring and the following chal-
lenges need to be addressed: 1) It is not easy to differentiate
eating activities from many other human activities; 2) Various
eating motions with different utensils (e.g., fork, spoon, knife
and bare hand) all involve similar hand movements (i.e.,
delivering foods from a plate to mouth) and thus it is a
challenging task to distinguish these eating motions based on
the noisy WiFi signals. 3) The chewing and swallowing only
exhibit minute facial muscle movements, which are relatively
hard to be captured by the WiFi signal; 4) Smartphones are
usually equipped with relatively small internal WiFi antennas,
making the quality of the received WiFi signals be much lower
than using the devices with external antennas. Thus, how the
smartphone could provide WiFi sensing is still unexplored.

Toward this end, we develop WiEat, a system that leverages
the channel state information (CSI) extracted from WiFi-
enabled IoT devices (e.g., smartphone, laptop) to provide fine-
grained eating monitoring. In particular, the proposed system
adopts a cluster-based method to differentiate the eating mo-
tions from the many other non-eating activities by capturing
the unique physiological characteristics of eating motions. We
then propose to extract the unique spectrogram features of
eating motions and develop a soft decision-based algorithm
to further recognize how a user eats (i.e., type of utensils).
Moreover, we utilize a Minute Motion Reconstruction method
to capture the minute facial muscle movements of chewing
and swallowing and develop an accumulated power spectral
density method to detect the periods of these minute motions
for deriving the statistics of chewing and swallowing. In
addition, we use wifi-enabled devices (i.e., smartphone, laptop)

to build the first generation system that has been extensively
tested for both single person case and two people case.
Figure 1 illustrates a target scenario where a user put his/her
smartphone on a dining table while eating. The smartphone
will continuously collect WiFi signals from a WiFi-enabled
device (e.g., laptop or IoT devices). The collected data can
be used to provide automatic eating monitoring. We validate
these two cases because they can be achieved with only a pair
of transceiver, and they covers the majority of daily eating
scenarios (nearly 60% of Americans regularly ate on their own
according to the American Time Use Survey [18]).
Our contributions are summarized as follows:

• We demonstrate that the CSI extracted from WiFi signal
can be used to provide fine-grained eating monitoring,
which not only recognizes the eating motions but also
capture the minute muscle movements of chewing and
swallowing.

• We develop a device-free eating monitoring system based
on CSI to automatically track people’s eating activity,
which can be easily deployed on smartphones or WiFi-
enabled IoT devices without incurring additional costs.

• We develop a soft decision-based approach grounded on
the analysis of CSI spectrogram to identify various eating
motions associated with different utensils. Moreover, we
propose a minute motion reconstruction method to cap-
ture the minute facial muscle movements and develop an
accumulated power spectral density method to derive the
chewing and swallowing statistics.

• Extensive experiments with 20 people over 1600-minute
eating show that our system can recognize the user’s
eating motions and estimate the fine-grained chewing and
swallowing statistics with high accuracy.

II. RELATED WORK

Traditional eating monitoring methods are mainly based on
questionnaires or self reports [4], [5], [19]. Fallaize et al. [19]
design Food4Me, an online Food Frequency Questionnaires
(FFQ) system, to collect a user’s nutrient intake information.
The recent smartphones Apps [4], [5] enable the user to
conduct self reports with more flexibility and convenience.
However, these methods require the user’s active participation
and suffer from the subjective bias and memory recall impre-
cision.

To reduce the user’s efforts, vision-based methods such as
cameras [20], [21] are designed for automatically dietary mon-
itoring. DietCam [20] performs automatic dietary assessment
using the photo strings or short videos taken by the user’s
mobile device, while eButton [21] relies on a camera attached
to chest location to capture and evaluate the diet. However, the
vision-based approaches may raise privacy concerns, because
images often capture the user’s sensitive information (e.g.,
eating with whom and where). Instead, there are some studies
focusing on developing smart utensils to analyze the food
intake automatically. Smart-U [10] uses a dedicated spoon
equipped with a LED light & sensor of recognizing different
foods based on their reflected light spectra. But these methods
limited to a dedicated spoon or knife are hard to provide
the comprehensive eating monitoring, where people could eat
flexibly with other utensils or bare hands.
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Figure 2. CSI amplitudes of one subcarrier under different human activities.

There are also active studies using the wearable devices
(e.g., head-worn and wrist-worn devices) to provide automatic
eating monitoring [11], [12]. Thomaz et al. [11] utilize the
accelerometer on a smartwatch to capture the eating moments
by recognizing the user’s hand motions during eating. Simi-
larly, Amft et al. [12] detect the air-conducted vibrations of
food chewing by a condenser microphone embedded in an ear
pad to understand the food textures. However, all the above
methods are intrusive to the user by requiring the user to wear
one or multiple dedicated devices.

Recent years, WiFi sensing has shown the initial success to
provide the non-invasive human activity recognition [15]–[17],
[22]. E-eyes [15] utilizes the WiFi signals to provide device-
free location-oriented human activity identification. Guo et
al. [16] use the WiFi signals from IoT devices to provide
device-free fitness assistance. Liu et al. [17] develops a vital
sign tracking system, which can detect minute human body
motions like breathing via WiFi signals. Thus, in this paper, we
propose to utilize the WiFi signals from a user’s smartphone
to provide fine-grained eating monitoring.

III. SYSTEM

A. Feasibility Study
To design and implement an RF-based eating monitoring

system, the basic idea is to explore the hidden relationship
between human motion and the extracted Channel State In-
formation (CSI). CSI is a fine-grained measurement of the
wireless channel with 30 subcarriers, and each subcarrier
measures the state of a subchannel with the amplitude and
phase information. Compared with traditional received sig-
nal strength (RSS) measurement, CSI provides fine-grained
channel state information that describes the propagation of
wireless signals, including its fading, scattering, multipath,
and wireless interference. Thus, when a user is present in
the signal propagation paths, his/her body motions will affect
the WiFi signals in the form of reflection, absorption, and
refraction, which can be captured and revealed by the CSI
pattern. However, eating is a complicated activity, which
includes significant hand motions that deliver food to mouth as
well as the minute muscle level jaw movements and pharynx
movements that break down and ingest the food.

To explore the relationship between human motion and the
extracted CSI, we ask a participant to perform a series of
daily activities, including walking, standing, sitting, eating
with a fork and eating with a spoon. In the meanwhile, the
participant’s smartphone is placed on the table as illustrated

in Figure 1. The CSI is extracted from the smartphone’s side
for further analysis. Figure 2 shows the CSI amplitude of one
subcarrier, where we mark the ground-truth of the participant’s
activities. We observe repetitive patterns of CSI amplitude that
associated with eating motions. This is because food intake
process that contains repetitive motions of delivering food to
mouth. Moreover, after each eating motion (i.e., food delivery),
we also observer slight fluctuations of CSI amplitudes (e.g.,
marked by the red rectangular), which correspond to the
minute jaw movements of chewing. However, it’s hard to
further differentiate between using a fork and using a spoon
from the CSI amplitude. In addition, the minute movements
caused by chewing and swallowing are easy to be submerged
by noises.

B. System Overview
The basic idea of our system is to detect the fine-grained

food intake activities and minute facial muscle movements
(i.e., chews and swallows) leveraging WiFi signals. As shown
in Figure 3, our system takes the CSI measurements from
WiFi-enabled devices as input and extracts the relative phase
and amplitude information. To mitigate the interference of
environment, we first perform data calibration and noise
removal to filter the outliers caused by the diffraction and
reflection of the stationary objects (e.g., dining table and
walls). To derive the user activity information associated with
the calibrated data, we then apply relative short time energy
(STE) to calculate the corresponding spectrogram pattern.
Based on that, the daily activities performed by users are
captured and segmented in terms of different frequency ranges.
After this step, we propose a PCA-based method to extract
unique behavioral characteristics of eating motions and utilize
K-means clustering approach to further differentiate the food
intake activities from daily activities.

The core of the proposed eating monitoring system consists
of two components, soft decision-based eating motion classi-
fication and accumulated power spectral density (PSD) based
chew and swallow estimation. Given the differentiated eating
activities, we further categorize them into different food intake
motions based on utensil usages. In particular, we extract the
statistic features from each orthogonal frequency-division mul-
tiplexing (OFDM) subcarrier to capture the inherent behavioral
characteristics of different eating motions. The learning-based
classifier recognizes utensil types based on each CSI subcarrier
separately and calculates the decision probability of classifying
the eating motion into every pre-trained category (i.e., fork,
spoon, knife + fork and bare hand). Probability-based soft
decision integrates the decision results from different CSI
subcarriers by adding each category probabilities of different
subcarriers. After comparing the value of four utensil-category,
we select the highest one as our final decision output.

The eating motion identification aims to quantify the chew-
ing and swallowing motions by deriving the chewing period
and measuring the statistics of chews and swallows. Specifi-
cally, during the interval of each identified eating motion (i.e.,
food delivery), minute motion reconstruction is performed to
magnify the small facial muscle movements of chewing and
swallowing by taking advantage of all the CSI subcarriers
to reconstruct the minute motion information. To estimate
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Figure 3. System Flow of WiEat.

the chewing period, we develop accumulate PSD-based chew
detection to analyze the repetitive patterns of the chew motions
from the CSI power spectral density accumulated over all
the CSI subcarriers. Moreover, to detect the swallowing, the
threshold-based swallowing detection recognizes the swallow-
ing motions by capturing the inherent muscle movement dif-
ferences between chewing and swallowing based on amplitude
range and peak-to-valley time interval.

IV. FINE-GRAINED EATING MONITORING

A. Data Pre-processing

1) Data Calibration and Noise Removal: WiFi signals
suffer from RF interference and ambient noises. To eliminate
the impact of such noises, we adopt the outlier removal
approach as a first step. We discard the outlier-elements that
are more than an interquartile range above the upper quartile or
below the lower quartile. After removing the outliers, there still
are some irregular impulses and fluctuations in CSI amplitude.
Our key observation is that the ambient noises usually present
on a fixed frequency range. Inspired by this, we apply a band-
pass filter to remove interference caused by the ambient noises.

2) Spectrogram-based Activity Segmentation: After data
calibration, our system utilizes a spectrogram-based method
to segment the activities. We use the cumulative power
spectral density (CPSD) to calculate the integrated frequency
domain affected by human activities. According to large body
movements always lasting for a short period and perform an
ephemeral impulse in the frequency domain, we reconstruct
the CSI complex value to enlarge the trifling variances into
a distinct pattern. Inspired by this, we adopt Cumulative
Short Time Energy (CSTE) to capture each eating activity.
Specifically, we calculate the CPSD by accumulating all the
power spectral density along the frequency dimension in
the corresponding spectrogram. The CSTE is then calculated
based on the CPSD by the following equation:

STE =

∞∑
i=−∞

[CPSD(i)W (n− i)]2, (1)

Chews ChewsChews Chews Chews Chews Chews Chews

Eating with a fork

Figure 4. Illustration of spectrogram-based activity segmentation.

where CPSD(i) is the cumulative power spectral density,
W (n) denotes the window function and n represents the frame
shift of samples. In the relative spectrogram in frequency
domain shown in Figure 4 we can observe clearer repetitive
patterns, where the color degree of the wave represents the
strength of power amplitude. The corresponding points of the
zero points marked in the figure, determine the starting and
ending time of the activities caused by users, which could be
used for activity segmentation.

B. Differentiate Eating Activities from Non-eating Activities

In this section, we focus on differentiating the eating activi-
ties from non-eating indoor activities with a K-means cluster-
based eating activities identification method.

Eating activities are defined as the movement of delivering
food from cutlery to mouth. The basic idea is to capture
the wireless channel variances of all activities and then use
the cluster-based method to differentiate them. We first show
how different activities influence the CSI estimate. As shown
in Figure 5, the eating activities and non-eating activities
can be categorized into two clusters based on two principal
components through the principal component analysis (PCA).
We observe that eating activities associated with different
utensils (i.e., using forks, using knives, using spoons, and
using bare hands) are gathered in the middle position, whereas
other non-eating activities such as reading, chatting and typing
surround externally. This is because the eating activities exhibit
repetitive movements from hand to mouth, which have high
similarity to each other. Although there are a few activities also
exhibit repetitive movements, especially, smoking, we exclude
them from our consideration because smoking is not allowed
in indoor environments in most of the places [23].

Inspired by the above observations, we propose to use a
cluster-based method to differentiate eating from non-eating
activities. Specifically, a K-means clustering method is used
to partition all the activities into two clusters based on two
geometric centroids denoted as µ1 and µ2. The threshold
is selected by the distance between the centroid of eating
activities and testing activities. The distance can be calculated
as Dc = ∥µ1 − µ2∥ . Through the analysis above, we show
that the cluster-based method has the capability of identifying
the eating activities by applying the threshold ξ to the Dc as
follows: {

Dc 6 ξ, eating motions

Dc > ξ, non− eating motions
(2)
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Figure 5. Clusters of eating activities and non-eating activities.

C. Soft Decision-based Eating Motion Classification
After detecting the eating activities, our system further

recognizes the detailed eating motions based on utensils recog-
nition, which provides the information about what a user eats
and how much he/she eats.

1) Eating Motion Feature Derivation: To further classify
the eating motion with utensils, we need to derive a series of
reliable features extracted from the CSI readings. Additionally,
unique features of eating motions could eliminate the environ-
mental noises in terms of WiFi signals that suffer from ambient
interference. Based on our preliminary experimental investiga-
tions and detailed analysis of extracted CSI, we particularly
choose 14 features extracted from both time domain (e.g.,
mode, average rectified value, interquartile range, etc.) and
frequency domain (e.g., root mean square frequency, power,
etc.) of each subcarrier.

2) Learning-based Classifier: We adopt the learning-based
classifier to further identify the eating motions with utensils.
We use Support Vector Machine (SVM) implemented by LIB-
SVM [24] with linear kernel to build the classifier. Specifically,
for each segmented CSI raw reading, we extract a set of
fourteen features from all thirty subcarriers and then derive a
two-dimensional with 30×14 vectors as the input for learning-
based classifier. We denoted the two-dimensional vectors from
selected thirty subcarriers as v = [υ1, ..., υi, ..., υ30], where
υi includes the fourteen features mentioned above. Four pre-
diction probabilities regarding different eating motions with
utensils are defined as ρf , ρk, ρs, ρh, corresponding to forks,
knives, spoons, hands, respectively. Then the estimated predic-
tion probabilities for four different eating motions with utensils
from the ith subcarrier can be obtained by using the following
equation 3: {

P i = max{ρif , ρ
i
k, ρ

i
s, ρ

i
h}

Ptotal =
∑30

i=1[ρ
i
f + ρik + ρis + ρih]

(3)

3) Probability-based Soft Decision Strategy: Even though
some carriers show lower sensitivity to users’ eating motions,
they still contribute useful information to the classification
decision. The traditional methods by majority vote over the
hard decision results (i.e., one of the categories) or subcarrier
selection are hard to utilize the useful information from all the
CSI subcarriers. Different from these methods, we develop
a new probability-based soft decision strategy to leverage
all the subcarriers and infer the eating motions with various
utensils. In particular, the probability of classifying the eating
motion to a utensil category based on each CSI subcarrier

Figure 6. Reconstructing chew-
ing/swallowing on CSI.

Figure 7. Accumulated PSD of
CSI.

can be integrated with an assigned weight. The integrated
probabilities of the all utensil category are compared, and
the utensil category with the largest integrated probability
is the final decision. The soft decision-based eating motion
classification can be described as:

argmax

(
30∑
i=1

[ρif · wi
f ],

30∑
i=1

[ρik · wi
k],

30∑
i=1

[ρis · wi
s],

30∑
i=1

[ρih · wi
h]

)
, (4)

where the assigned weight value w is determined based on the
variance of the CSI at each subcarrier, with the larger variance
showing higher sensitivity to the eating motions.

D. Chewing and swallowing Detection

Chewing is a physical degradation or digestion of food, and
swallowing is the phase following chewing. To distinguish the
food intake type and to calculate the amount of food a person
eats, it is essential to detect chewing and swallowing activity.

1) Minute Chewing/Swallowing Motion Reconstruction:
Although chewing and swallowing motions can be detected
to have an impact (i.e., slight vibrations) on CSI, the minute
motion caused by chewing and swallowing still can not
be identified accurately from the CSI. There are two main
challenges we need to address. First, not all subcarriers are
sensitive to tiny motions. Some subcarriers are less suscep-
tible to chewing and swallowing activities because different
subcarriers have different central frequencies. Besides, the
performance of some subcarriers are not consistent, and they
might present sensitive amplitude for one period time but have
dull amplitude for another period time. Second, environmental-
related uncertainty and noise (i.e., wireless interference and
multipath reflection) will also cause CSI fluctuation, which
makes it hard to differentiate the CSI patterns caused by real
chewing and swallowing motions in CSI time series.

To provide a robust chewing and swallowing detection
model, we first utilize a Butter-worth band-pass filter with a
cutoff frequency of 0.8 Hz∼3 Hz to remove unwanted noise,
because chewing and swallowing activities are usually fixed
around a low-frequency range [25]. Furthermore, a moving
average filter is used to remove outliers in the signal.

After we get the filtered signal, based on Mouth Motion
Profile [26], we propose to reconstruct the CSI from all
subcarriers to get a single representative CSI sequence, which
amplifies the CSI fluctuation caused by chewing and swal-
lowing without losing the original information. In particular,
a sliding window is applied on all subcarriers parallelly,
and a series of CSI segments are selected from various
subcarriers and then assembled one by one into a single new
CSI according to time series. For each sliding window (the
sliding window size is 250 ms), the mean amplitude values
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Figure 8. Chewing and swallowing differentiation.

of all subcarriers are calculated, respectively. Then the ten
subcarriers which have the nearest mean values to the average
mean value of all subcarriers are picked. This step will filter
out those abnormal and less-sensitive subcarriers. Furthermore,
among these selected subcarriers, the segment which has the
maximum peak to peak value within one sliding window is
chosen as a representative segment for this time slot. By
moving the sliding window along time sequence, we could
select a series of CSI segments and produce a single new
CSI sequence. As shown in Figure 6, the fluctuation of the
new signal is more significant than that from any of the
original single subcarrier, which proves the effectiveness of
the reconstruction.

2) Accumulate PSD-based Chewing Period Estimation:
To further reduce the impact of environmental-related noise,
and eliminate those fake fluctuation caused by noise, it is
necessary to estimate the chewing period. Based on the es-
timated period, it is convenient to remove those fake chewing
and swallowing motions, which are too close to adjacent
chewing and swallowing motions. In our system, instead of
calculating the chewing period from time domain, we find it
is more effective to acquire a stable period of chewing from
frequency domain. Specifically, we first transfer time domain
CSI amplitude to frequency domain by using power spectral
density (PSD). Since PSD would produce one strong peak at
the frequency that corresponds to the periodicity of dominant
repetitive fluctuations, we observe that the CSI measurements
in our frequency window (i.e., 0.8 Hz∼3 Hz) also present one
strong peak that corresponds to the dominant chewing rate.
Because the target CSI measurement is only derived between
two adjacent identified eating motions, and we have filtered the
interferential frequency components by our frequency window,
we believe that the estimated period is dominated by mouth
motion.

Moreover, to further utilize different subcarriers which
present conform results in frequency domain and estimate a
more robust chewing period, accumulated power spectral den-
sity (APSD) method is proposed in our system to accumulate
the results collected from all subcarriers. The accumulated
power spectral density of 30 subcarriers with N CSI amplitude
measurements can be presented as:

APSD = 10log10

30∑
i=1

(abs(FFT (ci)))
2

N
, (5)

where c is the CSI measurements of subcarrier i. Since the
swallowing times are far less than chewing times in real
life, the highest peak is identified as the chewing rate of the

Smartphone (RX)

Wi-Fi Signal

Laptop (TX)

(a) Smartphone-Laptop setup

Laptop (TX) Laptop (RX)

Wi-Fi Signal

(b) Laptop-Laptop setup

Figure 9. Illustrations of two experimental settings.

specific period between two eating motions. Figure 7 shows an
example to infer the chewing rate of one period time between
two eating motions. The ground truth of the chewing rate is 1
Hz, which is measured and verified by camera-based method.
Figure 7 depicts that there is one strong peak around 1 Hz
in the APSD, which implies that our APSD could effectively
estimate the chewing rate of a user.

Based on the average period of chewing, we propose a
threshold-based peak detection approach to identify the candi-
date CSI patterns caused by chewing and swallowing on CSI
data. In original peak detection algorithm, a peak could be
found if the value of data is larger than its two neighboring
data. However, this algorithm has two limitations. First of
all, some peaks that are actually caused by one chewing and
swallowing motion can all be marked out. Second, environ-
mental noises could also produce some tiny peaks. In our
system, two thresholds are set empirically to remove these fake
peaks. Firstly, based on the average chewing period, a minimal
distance β between two neighbor peaks is used to restrict the
peak-to-peak separation, and only peaks that recur at regular
intervals are preserved. Second, a minimum amplitude of the
peaks γ is used to filter out those fake peaks caused by
environmental noises. After filtering these fake peaks, we get
the number of all CSI patterns caused by mouth motions, and
in the next part, we can distinguish chewing and swallowing
motions from those preserved real peaks.

3) Threshold-based Swallowing Detection: Swallowing
counting is challenging because the CSI measurements be-
tween chewing and swallowing are both sinusoidal-like pat-
terns. Nevertheless, we observe that the CSI measurements of
chewing and swallowing are still distinguishable on the recon-
structed CSI representative. Compared with chewing motions,
swallowing motions are more slowly and the movement range
of the throat when swallowing is more moderate than jaw
activity. Therefore we propose a threshold-based mechanism
to classify the CSI patterns into two classes based on two
measurements, including CSI amplitude range and correspond-
ing peak-to-valley time interval. Specifically, as shown in
Figure 8, a swallowing motion occurs following several times
of chewing. The peak-to-valley time interval of CSI sinusoidal
patterns is calculated as tj = lj+1 − lj , while the range of
CSI amplitude between the peak and corresponding valley
is derived from aj = pj − vj . pj and vj are corresponding
to the peak and valley of the jth CSI sinusoidal pattern
respectively, and lj+1 and lj are the time stamp of the peak
and valley of the same sinusoidal pattern on time serials. After
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Figure 10. Illustrations of two experimental settings.

we obtain the measurements of each CSI sinusoidal pattern, a
threshold-based method is proposed to classify the candidate
CSI sinusoidal pattern into two classes. The average values
of the amplitude a and period t of all CSI sinusoidal patterns
within a specific period time (e.g., between two adjacent eating
motions) are identified as the reference threshold of these two
classes. Those CSI sinusoidal patterns whose amplitude aj
is less than a and also the period tj is larger than t are
counted as swi, which represents one swallowing time. Once
we recognize swallowing from chewing, it is very convenient
to derive the statistic of chewing and swallowing respectively.

V. PERFORMANCE EVALUATION

A. Experimental Methodology

Experimental Setup: To evaluate WiEat’s performance in
detecting eating activity, we build a prototype with laptops
and smartphones. Specifically, we conduct experiments in two
setups including Smartphone-Laptop Setup and Laptop-Laptop
Setup. The Smartphone-Laptop Setup describes the practical
scenario when a user places her/his personal smartphone on
a dinning table during eating. In this setup, the smartphone
is connected to a laptop to receive WiFi signals and sense
the user’s eating activities. Laptop-Laptop Setup describes a
different scenario, where an IoT device (e.g., smart TVs and
restaurant table tablets) can use the WiFi signals received from
a WiFi-enabled device to capture the user’s eating. Both setups
are deployed in three representative indoor environments to
evaluate our system, including a office and two dining rooms.

Devices: We conduct experiments with two different smart-
phone models, Nexus 6 and Huawei Mate 10 smartphones.
The Nexus 6 has 3 GB RAM and a 2.7 GHz Snapdragon 805
processor while the Huawei Mate 10 is equipped with a 4GB
RAM and a 2.36 GHz Kirin 970 processor. We also utilize
two Dell E6430 laptops equipped with 802.11n WiFi wireless
card IWL 5300 NICs [27] and 6dBi rubber ducky external
omni-directional antennas for extracting CSI data. One laptop
is used to imitate the IoT device and the other serves as the
WiFi-enabled device. Both laptops are running Ubuntu 14.04.4
LTS with the kernel 4.2. And the WiFi cards work at 5GHz
frequency band with 1000pkt/sec transmitting rate.

Data Collection: We recruit 20 participants to perform
eating activities with the two experimental setups at three rep-
resentative indoor environments. In total, 1600 minute eating
period data is collected and the ground truths are measured and
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Figure 11. Utensils Identification: confusion matrix for different setups.
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Figure 12. Impact of the receiver selection on system performance.

verified by camera-based method during the experiments. To
collect CSI in the smartphone-laptop setup, we configure the
laptop (serving as a WiFi-enabled device) to run in the net-link
mode, which sends Internet Control Message Protocol (ICMP)
echo and gets the reply from the smartphone to collect the CSI
data from the smartphone [28]. For the laptop-laptop setup,
we configure the both laptops (i.e., an IoT device and a WiFi-
enabled device) to work under the injection mode. Moreover,
for both setups, we test three distances (1 m, 2 m, and 3 m)
and four different placements to deploy the devices. Unless
mentioned otherwise, half of the data we collect are used to
build the users’ profiles, and half are used to evaluate the
performance.

Evaluation Metrics: Detection Rate is the ratio of the
number of correctly detected eating activities over the total
number of eating activities. Accuracy is the ratio of the
number of correctly detected activities over the total number
of activities. Percentage Error of estimating the chew-
ing/swallowing count is defined as:
percentage error = |estimated number−ground truth|

ground truth

B. Overall Performance
We evaluate the overall performance of food intake gesture

recognition, chewing and swallowing estimation under differ-
ent real three indoor environments including two dining rooms
and a laboratory. Considering the fact that users usually put
his/her smartphone on a dining table, we perform a detailed
study of dietary information under various factors including:
the impact of receiver selection, the impact of transceiver
distance, and the impact of transceiver position.

Impact of Receiver Selection: We first evaluate WiEat’s
performance in smartphone-laptop setup and then compare to
the laptop-laptop setup. Figure 11 presents the identification
results for four different eating motions based on utensils
held by users. As shown in Figure 11(a) and Figure 11(b),
WiEat achieves average accuracy in around 95% and 94%,
respectively. We observe that the laptop-laptop setup gives
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Figure 13. Impact of the transceiver distance on system performance.

a slightly better performance than smartphone-laptop setup.
The reason might be the receiving laptop installed with the
external antenna, which could reduce the interference of multi-
path when transmitting. Moreover, Figure 12(a) depicts that
our system could achieve a detection rate of 100% on both
smartphone-laptop setup and laptop-laptop setup, confirming
that the effectiveness and reliability of our system both on dif-
ferent transmitting WiFi-enabled device. Figure 12(b) presents
the performance of our soft decision-based classification algo-
rithm on differentiating eating utensils including spoon, fork,
fork & knife and hands. We observe that our system can
achieve over 95% average accuracy across different eating
utensils for both smartphone-laptop and laptop-laptop setup.
Additionally, it is encouraging to find that all the four types of
utensils can all be recognized well with the lowest accuracy as
92% on smartphones and 93% on laptops. This demonstrates
that our system is robust for utensils identification even if the
different WiFi-enabled transmitters are used.

Impact of Transceiver Distance: Different distances be-
tween the transceivers would affect the accuracy of eating
monitoring due to the increments of multi-path and diffrac-
tion. Figure 10(a) shows that the transceivers are placed at
two sides of the dining table with different distances from
1 to 3 meters. Figure 13(a) depicts that our system could
achieve over 97% eating motion detection and 93% intake
gesture classification accuracy even for 3 m distance case.
Figure 13(b) shows the overall accuracy for intake gesture
recognition under different training set size. We observe that
WiEat could achieve sufficient accuracy to recognize fine-
grained eating motions based on the utensils held by users with
only several training sets. For chews and swallows estimation,
Figure 13(c) depicts that the average percentage error slightly
increases when transceiver pair is separated by 3 m. This is
because the such tiny jaw open-close movements and throat
vibrations are hard to be captured under weaker WiFi signals
in a longer distance. Figure 13(d) illustrates the Cumulative
Density Function (CDF) of the chews and swallows percentage
error for three transceiver distance settings. The above results
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Figure 14. Impact of the transceiver position on system performance.

show that more than 80% percentage error of the number of
chews and swallows estimation are below 20%, indicating that
our system is robust and effective under a longer distance.

Impact of Transceiver Position: We further evaluate our
system with different location of the transceivers as shown
in Figure 10(b). Figure 14(a) shows that left-side and right-
side settings give better performance than front-side and back-
side settings for eating motion detection and intake gesture
classification. This is because human body dominate and
partially block the WiFi links, increasing the amount of
interference and diffraction of WiFi signals when transmitting.
Figure 14(b) shows the classification accuracy of food intake
gesture under different number of training eating motions.
Consistent with the previous observations, left-side and right-
side settings obtain better classification accuracy, and the
classification accuracy increases with the growing number
of training eating motions. Figure 14(c) and Figure 14(d)
present the mean percentage error and the CDF of chewing and
swallowing estimation. We observe that the average percentage
error are all below than 12% even for the worst case Setup
P4. The above results show that our system is effective under
different relative positions of the WiFi-enabled device.

VI. DISCUSSION

In this section, we discuss the practicality of WiEat and the
effectiveness of the measure experimental data under various
practical positions. According to survey statistics [18], there
are around 40% people usually eat with others. In that case,
we evaluate two people case and the results show WiEat
can achieve promising accuracy. We will further explore the
potential of WiEat in a multi-person scenario. As shown in
Figure 15, we conduct the experiments of two people eating
together in three common daily-life scenarios. The relative
position of two people includes face to face, side by side,
and one sitting in the right angle of another. In addition,
we use directional antennas to boost the reception of the
WiFi signal. WiEat can achieve a promising accuracy for
intake gesture classification for three deployments, confirming
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the feasibility of monitoring a user under the interference of
surrounding people. We also notice that among three scenarios,
the accuracy of Setup U3 is highest. This is because if the
distance between a user and surrounding people is longer than
the corresponding radius of the Fresnel Zone, the impact of
people nearby can be negligible [16]. The results show that
our system has the practicality to work with two people cases.
A more comprehensive study of the system performance in
multiple people scenario with various environments will be
explored in our future work.

VII. CONCLUSION

In this paper, we explore the feasibility of using the WiFi-
enabled devices to provide users with automatic eating mon-
itoring. We show that the channel state information extracted
from a user’s smartphone or IoT devices could be utilized to
both recognize the user’s fine-grained intake gesture based on
utensils and detect the minute facial muscle movements of
chewing and swallowing, which could further infer the food
intake types. We develop a device-free system to distinguish
eating activities from non-eating activities based on a K-
means cluster methods and then adopt a soft decision-based
learning approach to classify the eating motions according
to the utensils used by the user. Moreover, we reconstruct
the minute facial muscle movements based on the CSI and
develop the accumulated power spectral density method to
derive the chewing and swallowing statistics. Extensive exper-
iments involving 20 people over 1600-minute eating period
are conducted. The results show that the proposed system
can achieve up to 95% accuracy for identifying users’ eating
motions and 10% percentage error for chewing and swallowing
amount estimation.
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